Machine Learning in Modern Well Testing
نویسندگان
چکیده
Well testing is a crucial stage in the decision of setting up new wells on oil field. Decision makers rely on the metrics to evaluate the candidate wells’ potential. One important metric is permeability, measuring the ability of porous material to transmit fluids. High permeability often leads to high yielding. In a conventional well test, the well is controlled to produce at a constant flow rate, and the pressure is measured for a couple of hours (Figure 1). This pressure curve will be used to interpret the reservoir parameters, including the permeability k and initial pressure Pi. To interpret the pressure curve, a radial flow with infinite boundary model is utilized, whose mathematical solution may be simply written in the Equation 1. Key parameters in Equation 1 are: pwf , the measured bottom hole pressure, Pi, the initial pressure; q, the constant flow rate; k, the reservoir permeability. Traditionally the permeability may be interpreted by comparing the observed pressure curve with the calculated overlay template (Figure 2).
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملThe Predictive Learning Role in Drug Design
QSAR (quantitative structure-activity relationship) modeling is one of the well developed areas in drug development through computational chemistry. Similar molecules with just a slight variation in their structure can have quit different biological activity. This kind of relationship between molecular structure and change in biological activity is center of focus for QSAR Modeling. Predictions...
متن کاملA Reinforcement Learning Approach to Automated GUI Robustness Testing
Graphical User Interfaces (GUIs) can be found in almost all modern desktop, tablet and smartphone applications. Since they are the glue between an application’s components, they lend themselves to system level testing. Unfortunately, although many tools promise automation, GUI testing is still an inherently difficult task and involves great manual labor. However, tests that aim at critical faul...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کامل